您现在的位置是:主页 > 经典文案 >

数学的真正意义是什么-推荐88句

2023-10-29 15:08经典文案人已围观

简介数学的真正意义是什么 1、我国明代科学家徐光启看到了欧几里得几何的教育意义,他把此书翻译成中文,并在出版此书的序言中说:“精通此书者,无一事不可精;好此书者,无一事

数学的真正意义是什么

1、我国明代科学家徐光启看到了欧几里得几何的教育意义,他把此书翻译成中文,并在出版此书的序言中说:“精通此书者,无一事不可精;好此书者,无一事不可学。”他的话是何等之精辟!

2、科学知识应当具有一定的系统性。把本来系统的代数与几何的知识打碎,然后混杂在一起讲,今天讲三条线八个角,明天讲合并同类项,后天讲坐标,美其名日“打破学科界限”,“不断重复,螺旋上升”。这些做法是非常不当的。

3、数学研究对象的抽象性又决定了数学的演绎性。在生物学中,要断言麻雀有胃并不难,只要解剖几个麻雀就足够了,而在数学中,要说明勾股定理成立,不能只靠验证几个直角三角形,而需要证明。当然,数学研究中,在其探索阶段或许会用到归纳的办法。但是,归纳出来的结论,不能作为定论,而只能作为一种猜测,有待于将来的证明或者否定。这就是说,数学中要确立一条规律只能依靠严格的逻辑推理,而不能靠经验或实验数据,更不能靠人们的直觉或想当然。比如,许多大于2的偶数都可以表成两个奇素数之和,但是不能因此而说一切偶数皆如此。又如,我们测量了很多三角形的三个内角之和等于180。,但是不能因此而得出所有三角形都如此的结论,需要严格证明。

4、数学是研究数量、结构、变化、空间以及信息等概念的一门学科,在人类历史发展和社会生活中,数学也发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。

5、一个中学生在他工作之后,有可能再没有遇到过一个几何题目或一个二次方程,但他从数学课中所培养起来的思考能力以及推理能力,却伴随他的终生。

6、一堂好的数学课,当然应当生动、有趣,课堂活跃,吸引学生的参与也是重要的。但这仅仅是一个手段,而不是我们的目的。仅仅是课堂活跃,而所讨论的问题没有价值,同样不能算是一堂好的数学课。

7、欧几里得几何的原型是欧几里得所编的《几何原本》,出现在公元前270年左右,它是人类文明中的一座辉煌大厦。欧几里得在这本书中构建了人类有史以来的第一个完整的逻辑体系,它的完美、严密、精巧令人赞叹不已。爱因斯坦说:“在逻辑推理上的这种令人惊叹的胜利,使得人类为他们的未来成就获得了必要的信心。”

8、下面我来回答一下数学的真正含义。数学就是用数字和加减符号,所组成的一门学问。

9、人地渗透到自然科学研究的各个领域中去。例如,分子生物学中DNA结构的研究与数学中的扭结理论有关,而理论物理中的规范场论与微分几何中的纤维丛理论紧密相关。至于现代理论物理则用到了许多当代纯数学理论。20世纪80年代,美国自然科学基金会曾经指出,当代自然科学的研究正在日益呈现出数学化的趋势。

10、《几何原本》曾经作为教材,在欧洲使用一千年以上。欧几里得的书被翻译成世界各国文字,其版本之多,发行量之大,继续之久,仅次于《圣经》。千百年来,世界各国都以《几何原本》为基础,编写了各种教材,在初中阶段讲授。其目的在于训练学生的推理能力。用点、线、角、三角形、圆等这些学生容易接受而明确无误的数学对象为载体,训练他们的推理能力,这是一个十分有效的办法。我们不可能用一个国际政治问题、家庭纠纷问题或其他实际问题来训练学生,因为这些问题不仅复杂,而且具有不确定性。当我们鼓励与启发学生独立完成一个几何题目时,实际上就在培养他们的思考能力与探究精神。比如,过圆外一点做一条直线与一圆周相切。学生为了解决它就得不断地分析、试验,逐步到达胜利的终点。这个思考的过程使得他的能力得到提高。

11、我认为,中学数学教育的目的有以下三个方面:传授初等数学知识;进行逻辑推理训练;培育科学精神。

12、以上是从传授知识层面而言的。然而数学教育的意义远远不只是知识的传授,更为重要的应该是,数学的训练对青少年的心智、潜能的开发与提升,是深刻的、长远的,而且也是其他学科所不能替代的。

13、数学是一门研究数量、结构、变化、空间以及信息等的学科,它所描述的数量关系与空间形式,就自然成为物理学、力学、天文学、化学、生物学等自然科学的基础。数学是现代理性文化的核心,是一种“思想的体操”,更是一门文化。数学的价值和意义可以说是无处不在的。世间的万事万物都有数与形这两个侧面,数学作为研究现实世界中的数量关系和空间形式的科学,是剔除了物质形态和属性,纯粹从数量关系和空间形式的角度来研究现实世界,它和哲学类似,具有超越具体学科、普遍适用的特征,对所有的学科都有指导性的意义。

14、数学是通用媒介,没有语言界限、文化界限、地域界限,是联通人类甚至外星文明的工具,打破局限,促进人类文明的发展;

15、数学可以左右人类的情绪,有时可以让人眉头紧锁,有时又可以让人茅塞顿开,心情愉悦,有一种成就感。

16、数学既是一种文化、一种“思想的体操”,更是现代理性文化的核心。

17、“数学的真正意义是什么?”在悟空问答上看到这个问题时,引发了我极大的兴趣。作为一名数学专业的在读博士生,平时除了专业学习之外,也会阅读大量的数学类课外书籍,思考一些数学本质性的问题以及数学与这个世界的联系。对于这位朋友提的问题,我认为这是个比较深刻的问题的,其实也很不好回答,不过我还是想和大家简单分享一些我目前的看法,期待与大家共同交流和进步!

18、数学最重要的意义是抽象。实际应用只是它工具性的一方面。在没有量子力学这门高深的学问之前,谁都不知道i有什么用,但欧拉还是对复变函数做出了很大贡献。

19、正确的改革应当具有继承性。抛弃自己的优良传统,而贸然用一种没有经过实践检验的东西替代它,那是危险的、有害的。

20、有人说,世界各国大多不再讲授欧氏几何,这根本不是事实,纯属误解。而应当说:用什么方式去讲解欧氏几何,什么时候讲,讲多讲少,各国各有不同。欧洲、日本、美国都有自己的做法,各不相同,但是无论如何不能认为世界各国都不讲欧氏几何。

21、数学教育的意义还在于科学精神的培育,就是指概念的准确无误与推理的严谨。在中学里做几何题目时,用一条竖线隔开,左面叙述推理过程中每一步的结论,而右面写出每一条结论的依据。这种训练是十分必要的,应当坚持一定的阶段。在这样的潜移默化之中,学生就养成了不说没有根据的话,或者根据不足的话的习惯。

22、这样的例子很多。医学上的CT技术,中文印刷排版的自动化,波音777的计算机模拟设计,指纹的识别,石油地震勘探的数据处理,网络系统安全技术等,在这些形形色色的成就背后,数学都扮演着十分重要的不可缺少的角色。数学在这些领域内不是一种可有可无的参考,而常常是问题的关键。

23、科学精神包含着科学的怀疑,而怀疑正是思考的开始。马克思和笛卡儿都讲过这一点。但是我不赞成什么发散思维与逆向思维的提法。

24、数学的这种精神,早在2500多年之前就确定了——这是古希腊人的功劳。它一直被作为数学的基本精神沿承至今。古希腊人对数学的最大贡献在于,他们认为数学中的每一个命题,都要根据明白无误的假定和事先给定的公理与公设,由形式逻辑推演出来。正是由于有了这种精神,古希腊人才发现了无理数,并导致欧几里得《几何原本》的诞生,使得古希腊的数学成就远远超过了同时代的其他文明古国。后来在欧洲文艺复兴时期,古希腊的这种精神在欧洲发扬光大,并带动了数学与自然科学的发展。比如,微积分的创立、万有引力定律的发现等。

25、我认为,数学存在的意义特别伟大。很多人可能反驳就是我们中学所学的数学生活中有用的部分只有小学。实际数学与我们的生活息息相关,各项各业的基础都与数学有关,甚至大脑思维的训练。就连马云那么大的成就,还会遗憾自己数学不好,设置数学奖项,选拔人才。当我们没有深入了解一件事或者一门学科时,千万不要否定它的意义。

26、在经济与金融的理论研究上,数学的地位更加特殊。大家知道数学没有诺贝尔奖。但数学家却从经济学获得了诺贝尔奖。在诺贝尔经济学奖的获得者当中,数学家占了相当大的比例(21世纪初的统计数字为17/27)。美国电影《美丽的心灵》就是描述了这样一位数学家——纳什。

27、什么是数学?数学是一门演绎科学。它的研究对象主要是“数”与“形”。一百多年前,恩格斯就曾给数学下过一个定义:“数学是研究现实世界中的数量关系和空间形式的科学。”一百多年过去了,数学的发展使得数学的研究对象,已经远远超出了“数”与“形”的范畴,于是出现了一些其他定义。但是,我依然认为恩格斯的说法,是对数学的较好概括。这是因为,无论如何,数学首要的和基本的对象是数量关系和空间形式,恩格斯的说法明确地指出了数学与现实世界的联系。

28、近年来,笔者发现部分大一学生分不清什么是定义与定理,更不了解定义或定理的重要性,也不明白为啥要证明。由于初等数学的概念一般较为简单,一般不明确表出“定义”二字,或许还可以理解的。但是不标出定理,把许多重要结论淹没在各种数学叙述之中,而且没有突出出来,并且一般没有明确的证明,这是不妥的。

29、

Tags:

很赞哦!

随机图文

标签云